亚洲午夜福利视频大全-久久精品不卡免费视频-大香蕉视频在线播放9-中文字幕伦理在线观看

技術(shù)文章

Technical articles

當(dāng)前位置:首頁技術(shù)文章等離子體處理對 硅表面氧空位缺陷工程

等離子體處理對 硅表面氧空位缺陷工程

更新時間:2020-12-02點擊次數(shù):3311

Electronic Supplementary Information For

Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma

treatment for enhancing VOCs sensing performances

Bin Tong, a b Gang Meng, * a c Zanhong Deng, a c Mati Horprathum, d Annop

Klamchuen e and Xiaodong Fang * a c

aAnhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine

Mechanics, Chinese Academy of Sciences, Hefei, 230031, China

bUniversity of Science and Technology of China, Hefei 230026, China

cKey Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei

230031, China

d Opto-Electrochemical Sensing Research Team, National Electronic and Computer Technology Center,

PathumThani 12120, Thailand

eNational Nanotechnology Center, National Science and Technology Development Agency, Pathum

Thani 12120, Thailand

 

Experimental Section

1.1 Synthesis of CuAlO2 particles

First of all, 0.04 mol Cu(CH3COO)2·H2O (Alfa Aesar, 99.9%) was dissolved in 160 mL absolute alcohol with

vigorous stirring, and then 16 mL HNO3 (Sinopharm Chemical Reagent, 99.7%), 0.2 mol C6H8O7·H2O

(Sinopharm Chemical Reagent, 99.8%) and 0.04 mol Al[OCH(CH3)CH2CH3]3 (Alfa Aesar, 97%) were added into

the above solution in sequence. After stirring for 6 hours, 16 mL HNO3 was added to the solution drop by drop to

obtain a well-mixed precursor solution. The precursor solution was dried at 100 °C overnight. In order to remove

the organics, the condensed solution was heated to 300 °C for 6 hours. After that, the dried powders were milled

for 24 h using a planetary ball miller and then annealed at 1100 °C for 10 h under air atmosphere. Subsequently,

the powders were reground and heated to 950 °C under flowing N2 atmosphere for 6 hours to form delafossite

CuAlO2 particles. To ensure the pure phase of delafossite CuAlO2, trace (excess) CuxO was washed with 1 M

diluted hydrochloric acid, 11 deionized water and absolute alcohol in sequence several times, and the final products

were dried in an oven at 80 °C for 24 h.

1.2 Fabrication of CuAlO2 sensors

The CuAlO2 slurry was prepared by dispersing the powders in appropriate isopropyl alcohol. CuAlO2 sensors

were prepared by brushing the above paste onto a thin alumina substrate with micro-interdigital Pt electrodes.

CuAlO2 films on slide glass substrates were fabricated simultaneously for characterization. After naturally drying,

the CuAlO2 sensors and films were heated at 350 °C under flowing air atmosphere for 3 hours. Afterwards, the

samples were treated by Ar&H2 plasma in KT-S2DQX (150 W, 13.56 MHz, (鄭州科探儀器設(shè)備有限公司)) plasma etching system

at 10 sccm 4% H2 in Ar and the pressure of ~ 99.8 Pa for 30 min, 60 min and 90 min, herein are referred to as

pristine, PT-30, PT-60 and PT-90.

1.3 Characterization and gas sensing test

CuAlO2 samples were characterized by X-ray diffraction (XRD, Rigaku Smartlab), scanning electron

microscope (SEM, VEGA3 TESCAN), field emission high resolution transmission electron microscope

(HRTEM, Talos F200X), X-ray photoelectron spectroscopy (XPS, Thermo Scientific Esca Lab 250Xi

spectrometer ), photoluminescence (PL, JY Fluorolog-3-Tou) and Electron spin resonance (ESR, JEOL, JES

FA200 ESR spectrometer ). Mott-Schottky measurements were carried out on an electrochemical work-station

(Zahner Company, Germany) in 1M NaOH solution (pH=12.5) with frequency of 5000 Hz. Platinum sheet,

Ag/AgCl electrode and pristine/ PT-30 CuAlO2 samples were used as counter electrode, reference electrode and

work electrode, respectively. Gas sensing tests were examined in SD101 (Hua Chuang Rui Ke Technology Co.,

Ltd.) sensing system. The response was defined as ΔR/Ra, ΔR = Rg Ra, where Ra and Rg are sensor resistance in

 

flowing drying air and synthetic VOCs, respectively. During gas sensing test, the total flow rate of the dry air and

VOCs gas were adjusted to be 1000 sccm by mass flow controllers (MFCs).

 

Fig. S1. Cross-sectional SEM image of typical CuAlO2 sensors. The inset shows a low-magnification image.

The sensing layer is comprised of loosely packed CuAlO2 particles, with a thickness of ~ 15 μm

 

 

Fig. S2. XRD patterns of pristine and Ar&H2 plasma treated CuAlO2 sensors. Ar&H2 plasma treatment didn’t

cause any detectable impurity phase. All the samples show a 3R (dominent) and 2H mixed CuAlO2 phase.

 

Fig. S3. SEM images of pristine (a) and Ar&H2 plasma treated PT-30 (b), PT-60 (c) and PT-90 (d) CuAlO2

sensors. Except for 90 minitues treated sample (PT-90) with appearance of small nanodots, no obrvious change

of surface morphology was obervered via Ar&H2 plasma treatment.

 中國科學(xué)技術(shù)大學(xué)   申請論文提名獎CC - 2019 - SI - Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment

感謝中科大的論文    沒有發(fā)完  之后我在慢慢更新吧

女女同性女同1区二区三| 高清国产一区二区| 激烈18禁高潮视频免费| 国产日本欧美激情| 欧美性做爰片免费视频看| 操烂嫩逼内射视频| 春宵福利导航91| 欧美日韩久久一区二区三区| 留学生美女被大黑屌猛戳| 欧美大鸡巴插入骚b| 无遮挡粉嫩久久久久久久| 夜夜38亚洲综合网| 大粗鳮巴r教师人妻91| 国产一国产一级毛片无码视频百度| 92婷婷伊人久久精品一区二区| 自拍偷拍视频颜射| 看女生b免费视频| 三级成人国产高清视频| 日韩久久中文字幕| 99热这里只有精品98| 五月天国产成人av在线| 精品久久av免费一区二区三区| 欧美高清在线观看一区二区三区| 中文字幕人妻一区二区三区久久| 国产精品白浆一区二区三区| 亚洲天堂成年人在线视频| 瓯美在线免费视频笫一区第二区| 中文字幕人妻一区二区三区久久| 92婷婷伊人久久精品一区二区| 黑人大吊性交啪啪啪| 使劲操大骚逼av| 18岁以下禁看美女的胸| 日韩精品高清在线| 国产高欧美性情一线在线| 亚洲乱码专区一区二区三区四区| 欧美日韩国产欧美| 欧美大鸡巴操大骚逼| 狠狠干无码日韩AV| 国产精品人妇一区二区三区| 欧美一级特黄大片在线看| 午夜精品福利一区二区三区蜜桃p|